Eigenvalue analysis of constrained minimization problem for homogeneous polynomial
نویسندگان
چکیده
In this paper, the concepts of Pareto H -eigenvalue and Pareto Z -eigenvalue are introduced for studying constrained minimization problem and the necessary and sufficient conditions of such eigenvalues are given. It is proved that a symmetric tensor has at least one Pareto H -eigenvalue (Pareto Z -eigenvalue). Furthermore, theminimumPareto H -eigenvalue (or Pareto Z -eigenvalue) of a symmetric tensor is exactly equal to the minimum value of constrained minimization problem of homogeneous polynomial deduced by such a tensor, which gives an alternative methods for solving the minimum value of constrained minimization problem. In particular, a symmetric tensor A is strictly copositive if and only if every Pareto H -eigenvalue (Z -eigenvalue) ofA is positive, andA is copositive if and only if every Pareto H -eigenvalue (Z -eigenvalue) of A is non-negative.
منابع مشابه
A particle swarm optimization algorithm for minimization analysis of cost-sensitive attack graphs
To prevent an exploit, the security analyst must implement a suitable countermeasure. In this paper, we consider cost-sensitive attack graphs (CAGs) for network vulnerability analysis. In these attack graphs, a weight is assigned to each countermeasure to represent the cost of its implementation. There may be multiple countermeasures with different weights for preventing a single exploit. Also,...
متن کاملA NEW APPROACH TO THE SOLUTION OF SENSITIVITY MINIMIZATION IN LINEAR STATE FEEDBACK CONTROL
In this paper, it is shown that by exploiting the explicit parametric state feedback solution, it is feasible to obtain the ultimate solution to minimum sensitivity problem. A numerical algorithm for construction of a robust state feedback in eigenvalue assignment problem for a controllable linear system is presented. By using a generalized parametric vector companion form, the problem of eigen...
متن کاملTime-Invariant Uncertain Systems: a Necessary and Sufficient Condition for Stability and Instability via HPD-QLFs
This paper investigates linear systems with polynomial dependence on time-invariant uncertainties constrained in the simplex via homogeneous parameter-dependent quadratic Lyapunov functions (HPD-QLFs). It is shown that a sufficient condition for establishing whether the system is either stable or unstable can be obtained by solving a generalized eigenvalue problem. Moreover, this condition is a...
متن کاملHomogeneous Polynomial Lyapunov Functions for Robust Local Synchronization with Time-varying Uncertainties
This paper studies robust local synchronization in multi-agent systems with time-varying parametric uncertainties constrained in a polytope. In contrast to existing methods with non-convex conditions via using quadratic Lyapunov function (QLF), a new criteria is proposed based on using homogeneous polynomial Lyapunov functions (HPLFs) where the original system is suitably approximated by an unc...
متن کاملPerturbation Theory for HomogeneousPolynomial Eigenvalue
We consider polynomial eigenvalue problems P(A; ;)x = 0 in which the matrix polynomial is homogeneous in the eigenvalue (;) 2 C 2. In this framework innnite eigenvalues are on the same footing as nite eigenvalues. We view the problem in projective spaces to avoid normalization of the eigenpairs. We show that a polynomial eigenvalue problem is well-posed when its eigenvalues are simple. We deene...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Global Optimization
دوره 64 شماره
صفحات -
تاریخ انتشار 2016